

Building a Digital Twin:

Testing the Effectiveness of Telecommunication Policies in a Virtual World

Edward J. Oughton

University of Oxford

edward.oughton@ouce.ox.ac.uk

PACIFIC TELECOMMUNICATIONS COUNCIL

- 1. Decisions
- 2. Currently poor transparency and reproducibility
- 3. Digital Twin: Holds promise...

(...if produced in the right way)

Digital infrastructure **decisions** are hard

Operators **don't** want to share **data**

We have few existing **open-source** models

Model code isn't shared, so **can't** be independently **validated**

Existing models **don't** have a **GUI** and are hard for non-technical users

Disagreement on FTTP Targets

'...I will set a target to see full-fibre connections being available to 15 million premises, that's the majority of homes and businesses, by 2025.'

Hammond, P. MP, Chancellor of the Exchequer (CBI Speech)

'We want to reach 10m premises by the mid-2020s, and believe we can ultimately fully-fibre the majority of the UK under the right conditions.'

Clive Selley, CEO Openreach (Response to CBI Speech)

What is a Digital Twin?

PACIFIC TELECOMMUNICATIONS COUNCIL

The Digital Twin Concept

'an integrated multi-physics, multiscale, probabilistic simulation of a vehicle or system that uses the best available physical models, sensor updates, fleet history, etc., to mirror the life of its flying twin.' Physical Domain Ser-Virtual Domain

Schleich et al. 2017

PTC'19 FROM PIPES TO PLATFORMS 20-23 January 2019 Honolulu, Hawaii

(NASA, 2010)

Scenarios

Method: High-Resolution Demand Data

Propensity to adopt $(p_i) = a_i \cdot b_i \cdot c_i \cdot d_i \cdot e_i$

Probabilities taken from the **Ofcom (2017) Technology Tracker** for propensity to adopt **>30 Mbps**

Method: Scenario Adoption

Method: Synthetic Network Structure

Data category	Data	Source	Year	
Supply-side	Postcode to exchange data	Openreach	2011, 2013	
Supply-side	Postcode to cabinet data	Openreach	2011, 2013	
Boundaries	Postcode polygons	Ordinance Survey	2012 (October)	
Supply-side	Broadband technology by postcode	Ofcom	2017	
Boundaries	Local Authority District polygons	ONS	2016	
Supply-side	Urban Local Authority Districts by city and size	Analysys Mason	2008	
Demand-side	Premises points data	Ordinance Survey	2016	
Supply-side	Exchange points	SamKnows	2017	

Method: Synthetic Network Structure

Geotype	Classification	Exchanges	Average lines per exchange	Cabinets	Average lines per cabinet	Distribution points	Average lines per distribution point	Average line length (km)
Inner London	Inner London	86	16,812	2,892	500	172,118	8.4	1.24
>500k pop	Major City (pop = 500k+)	204	15,512	6329	500	376,721	8.4	1.78
>200k pop	City (pop = 200k+)	180	15,527	5,590	500	332,713	8.4	1.8
>20k lines (a)	>20,000 lines, <2km from the exchange	167	17,089	6,008	475	365,886	7.8	1.5
>20k lines (b)	>20,000 lines, >2km from the exchange	167	10,449	4,362	400	223,708	7.8	4.83
>10k lines (a)	>10,000 lines, <2km from the exchange	406	10,728	9,679	450	604,925	7.2	1.4
>10k lines (b)	>10,000 lines, >2km from the exchange	406	3,826	4,142	375	215,740	7.2	4.0
>3k lines (a)	>3,000 lines, <1km from the exchange	1,003	2,751	13,455	205	493,569	5.6	0.73
>3k lines (b)	>3,000 lines, >1km from the exchange	1,003	3,181	22,227	144	570,745	5.6	4.83
>1k lines (a)	>1,000 lines, <1km from the exchange	1,230	897	5,974	185	246,555	4.5	0.62
>1k lines (b)	>1,000 lines, >1km from the exchange	1,230	935	9,343	123	257,043	4.5	4.09
<1k lines (a)	<1,000 lines, <1km from exchange	2,302	190	0	0	130,706	3.4	0.52
<1k lines (b)	<1,000 lines, >1km from exchange	2,302	305	0	0	209,571	3.4	4.26
National Figure:		5,578	4,886	90,000	303	4,200,000	6.5	2.33

Method: Objects

Method: FTTC, FTTdp and FTTP

(All capex costs taken from Tactis and Prism, 2018 for HM Treasury)

Asset	Costs
Fibre per metre	£10
Optical Connection Point	£45
G.Fast distribution point	£200
FTTP Customer Premises Equipment	£74
FTTdp Customer Premises Equipment	£37

(Tactis and Prism, 2018 for HM Treasury)

Expected Investment Return Period: 4 Years

- • Adoption Desirability - - FTTdp Passed - FTTdp Connected

^{©2018 -}DAFNI

Codebase

💷 README.md

The Cambridge Communications Assessment Model

docs latest build passing coverage 25%

(click on the 'docs' button to get directed to the full model documentation)

The Cambridge Communications Assessment Model currently focuses on the mobile sector to provide analytics for decisionmakers on (i) capacity-demand and (ii) risk, vulnerability and resilience. The fixed, wireless and satellite sectors are currently under development.

Setup and configuration

All code is written in Python (Python>=3.5), avoiding external dependencies.

A word from our sponsors

The Cambridge Communications Assessment Model was written and developed at the Judge Business School, University of Cambridge and at the Environmental Change Institute, University of Oxford within the EPSRC-sponsored MISTRAL programme, as part of the Infrastructure Transition Research Consortium.

Install

For development purposes:

Run this command once per machine:

How may the Digital Twin concept enhance our existing approach to testing policy options?

What characteristics does a Digital Twin require?

Why may a Digital Twin help support better decisions?

Contribution:

Development of an **open-source** fixed broadband assessment framework

Building a Digital Twin:

Testing the Effectiveness of Telecommunication Policies in a Virtual World

Edward J. Oughton

University of Oxford

edward.oughton@ouce.ox.ac.uk

PACIFIC TELECOMMUNICATIONS COUNCIL

