

Design and Implementation of a Demand Responsive Mobility as a Service

Jecinta Kamau

Doctoral candidate in Information Systems Engineering Advanced Information Technology Kyushu University, Fukuoka, Japan

PACIFIC TELECOMMUNICATIONS COUNCIL

Outline

1. Introduction

- 2. Demand Responsive Transport
- 3. Our Approach: Demand Responsive MaaS
- 4. Scheduling Demand Responsive MaaS
- 5. Experiment, Results and Evaluation
- 6. Conclusion

RESEARCH MOTIVATION

Quality of transport vs. access to social services

4

Motivation

Social Need for quality and affordable transport alternative

Technological Improvement scheduling and routing algorithms

Innovation Opportunity

Demand Responsive Community Mobility Service

DEMAND RESPONSIVE MOBILITY

Objective of Mobility

Moving from one place to another

DRT – Demand Responsive Transport

PTC'19 FROM PIPES TO PLATFORMS 20-23 January 2019 Honolulu, Hawaii

Shared Mobility Accessibility

Public: Ride is accessible to everyone Private: Ride only accessible to registered persons

From Ownership to Sharing

If owning a car is prohibitive for the last mile community, can the community share a car?

COMMUNITY SHARED MOBILITY SERVICE

Community Shared Mobility Model

Scheduling Shared Mobility Service

The scheduling problem

IFIC TELECOMMUNICATIONS COUNCIL

Related Research Review

*Selected Literature

DRT Scheduling Research	Goal	Constraints	Approach	Result
ADARTW [1]	ensure ride time is not exceeded and time window is respected	fixed stops vehicle capacity	Heuristic insertion Upper bounds on ride time and time window	average waiting time 15 minutes.
IATRS [2]	assure passenger arrival time	fixed stops vehicle capacity	Time windows	average waiting time 9 minutes
POCS [3]	provide estimated time instantaneously	real time requests flexible stops	upper bounds on ride time	average waiting time 5 minutes
Community Shared Mobility (Our Approach)	reduce waiting time maximize passenger turnover	-both fixed and flexible stops -vehicle capacity -quorum	Heuristic insertion Time windows	

Jang-Jei Jaw, Amedeo Odoni, Harilaos Psataftis and Nigel Wilson, "A Heuristic algorithm for the multi-ride advance request dial-a-ride problem with time windows, Transport Research Part B, vol. 208, no. 3 pp. 243-257 (1986)
Kota Tsubouchi, et. al., "The Development of A New Public Transportation System: On-Demand Bus", Proceedings of AEARU Joint Workshop - International Collaboration for Asian Sustainable Society(ICASS07), pp. 363-366, Wuxi, China (2007)
Masabumi Furuhata, Liron Cohen and Sven Koenig, "Online Cost-Sharing Mechanism Design for Demand-Responsive Transport Systems", METRANS Transportation Center (2003)

Solution Model

PTC'19 FROM PIPES TO PLATFORMS 20-23 January 2019 Honolulu, Hawaii Validating Our approach Simulation & Experiment

Simulation Configuration

	Configuration 1	Configuration 2
Number of requests	100	100
Time Window	15	5,10,15,20
Stop points	10	10
Stop time	20 seconds	5-20 seconds
Max ride time	1:30 hrs	1:30 hrs
Fleet size	1 vehicle	1 vehicle
Vehicle speed	30 kmph average	30 kmph average
Vehicle capacity	10 seats	10 seats
Vehicle operating hours	12	12

Simulation Design

*Scheduled trips are manifested

Where; P: passenger S: stop T: time TW: time window

6 demand trips 84.7% accepted requests

•Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Results: Time performance (Fixed Time Window and Stop time)

Average passenger turnover: 74% Average waiting time: 5 mins (reduced by 44.4% compared to DRT research review)

FROM PIPES TO PLATFORMS

🗃 19 | Honolulu, Hawaii

Kota Tsubouchi, et. al., "The Development of A New Public Transportation System: On-Demand Bus", Proceedings of AEARU Joint Workshop - International Collaboration for Asian Sustainable Society (ICASS07), pp. 363-366, Wuxi, China (2007)

Results: Time performance (variable Time window and Stop time)

Average passenger turnover: 84.7% Average waiting time: 2 mins (reduction by 60%)

PTC'19 FROM PIPES TO PLATFORMS 20-23 Januar 2019 Honolulu, Hawaii

Experiment Profile

- Dhaka, Bangladesh
- Route: 32km
- 2 Toyota Hiace
- 4 Notebook PCs
- 2 Driver consoles
- Call center
- Operation hours: 12
- Web and Android Application

Experiment Result: Time performance

Average waiting time: 3 mins

(reduced to 25% compared to current shared public transport in Dhaka)

FROM PIPES TO PLATFORMS

20–23 Januar 2019 Honolulu, Hawaii

24

PTC^{*}

On Demand Bus operation data at a glance

Overview

6 Stops, 2 trips per day in Urban 6 Stops, 3(2) trips per day in Rural

Days Operated 56/61 Working days Tk.44,190 **Revenue** collected 53/61 Working days Days Recorded 185 Total no. of trips Rides given PTC'19 FROM PIPES TO PLATFORMS 20-23 January 2019 | Honolulu, Hawaii 24 ACIFIC TELECOMMUNICATIONS COUNCIL @PTCouncil #PTC19

- 75.82% trip turn over
 - ➢ 77.05% in Dhaka
 - ➢ 65% in Bheramara
- Dhaka has more fulfilled trips than in Bheramara.
 - Due to consistency of staff bus service.

Passengers

897 Cumulative number of passengers

More passengers in Dhaka ٠

Challenges and suggestions

- Booking process to set up schedule is complicated for users.
 - Suggestion: Simpler interface is suggested; voice recorded input is suggested for less computer literate users without smartphones/ internet access.
- Route changes quite often. It takes time to create new system data files as the system error messages are difficult to understand and take time to troubleshoot. (average 2 days) Suggestion: Automated interface for updating system logs
 - > Suggestion: Automatically design system defined route based on user requirements.
- Actual travel time only provided by bus navigation start and end time. Takes lot of time to analyze every day file one by one.

> Suggestion: Use machine learning to automatically sort out the data for analysis.

- Other vehicle usage data not included in this report.
 - Suggestion: Automatically analyze bus navigation (GPS) data other vehicle usage times and purpose to establish actual vehicle usage vs idle time.

CONCLUSION

Research Contribution and Impact

Quality and affordable transport alternative

Time and quorum constrained trip scheduling algorithm with reduced waiting time

Community shared mobility model with entrepreneurship opportunity

Summary

- Addressed provision of quality affordable transport alternative.
- Reviewed research in Demand Responsive Transportation offers transport service only on demand and does not consider fixed schedule and quorum.
- Proposed a DRT based mobility as a service model that incorporates multiple services on a vehicle to maximize usage of the vehicle.
- Formulated a trip scheduling algorithm that takes into account the vehicle on-going schedule, quorum and fair cost sharing constraints.
- Our solution resulted in reduced waiting time and increased passenger turn over.

Design and Implementation of a Demand Responsive Mobility as a Service

Jecinta Kamau

Doctoral candidate in Information Systems Engineering Advanced Information Technology Kyushu University, Fukuoka, Japan jecinta@f.ait.kyushu-u.ac.jp

