
 

From phone booths to Wi-Fi kiosks: the spatial inequality of 

public connectivity in New York City 

 

ABSTRACT 

This paper offers the very first examination of the spatial patterns of public Wi-Fi 
hotspots deployment in New York City. Furthermore, it utilizes the Spatially Aware 
Technology Utilization Model to investigate what determinants (i.e., demographic and socio-
economic factors, digital infrastructure, and political orientation) might impact the spatial 
distribution of public Wi-Fi hotspot deployment with a Bayesian spatial modeling approach. 
Through the hot spot analysis, we find that the deployment of public Wi-Fi hotspots is not 
spatially equal across the five boroughs of New York City. Instead, it is highly clustered in 
Manhattan as the hot spot, while there are a few cold spots identified in the other four 
boroughs. We also find that the deployment of public Wi-Fi hotspots does favor the areas 
with denser commercial business and with a higher ratio of population who identified as 
Democrats. We can detect its efforts to mitigate the digital inequalities, such as those 
neighborhoods with more residentials who do not have high-speed Internet connections. But 
it does not improve broadband access disparities between digitally marginalized areas and the 
rest of the city, especially for the census tracts of more population without Internet or 
broadband subscription. Meanwhile, it also reinforces part of the existing digital divide, such 
as communities with more population with lower educational attainment. More importantly, 
the study also offers a spatial perspective, as the relationships identified would not be 
accurately estimated without incorporating the spatial effects in the modeling processing. 
 
Keywords: Digital inequality, Wi-Fi hotspots deployment, New York City, Hotspot analysis, 
Bayesian spatial modeling 
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Introduction 

Scholars have pointed out that public Internet access should be treated as essential 

community infrastructure, rather than potential economic enterprises (Simpsons, 2004). 

Lately, public Internet infrastructure has never been more indispensable than during the 

pandemic, as an essential service for working and learning remotely, connecting with friends 

and families, carrying out daily tasks and accessing telemedicine (McClain et al., 2021). As 

smart city plans roll out, city-wide infrastructure projects aiming at providing free and secure 

public Internet access have been launched across the United States in the form of Wireless 

fidelity (Wi-Fi), which is a wireless technology allowing devices to connect to Internet 

through access points (Oh et al., 2022). Wi-Fi technology has several advantages over wired 

telecommunications, as it is easy to install, and less expensive. Meanwhile, Wi-Fi is able to 

prevent the degradation in service quality during high volumes of mobile traffics (Poularakis 

et al., 2019). In the U.S., despite concerns over security risks, a customer survey finds that 

almost half of respondents use public Wi-Fi regularly to save their cellular data usage 

(Leininger, 2022).  

However, public Wi-Fi hotspots deployment could be operated differently on various 

levels, from large parts or all of a municipal area (i.e., New York City, Washington D.C.), to 

limited public facilities including public libraries and community centers (i.e., Seattle, 

Chicago). New York City (NYC), as one of the largest urban conglomerations in the world 

with a population of over 22 million, however, suffers from digital access inequities. Twenty 

nine percent of New Yorkers have no home broadband subscription and 46 percent of 

households in poverty lack both home and mobile broadband (Mayor’s Office of the Chief 

Technology Officer, 2021). Since 2015, then-mayor de Blasio has announced the launch of 

the project of LinkNYC, which could be the world’s largest free public Wi-Fi municipal 

network, while transforming the old phone booths into the Wi-Fi kiosks across five boroughs 
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(Pujol, 2022). Furthermore, the Internet Master Plan, released by the de Blasio 

administration in New York City in 2020, aims at bridging the digital divide and delivering 

equitable internet access in the metropolitan area by investing $157 million. Within the 195 

neighborhoods of New York City, 42% have at least one “hotspot” (free Wi-Fi access point) 

in a commercial area under the LinkNYC project. In total, the free public Wi-Fi has been 

deployed at 3,319 locations by around 17 providers on streets, open space, transit and public 

facilities across the five boroughs (Mayor’s Office of the Chief Technology Officer, 2021, 

see Figure 1). 

[FIGURE 1 AROUND HERE] 

Fuentes-Bautista and Inagaki (2012) argue that the social shaping of the rapid growth 

in Wi-Fi adoption, is contributed by the partnerships among industry, community 

organization, academic and research institutions, and local government. However, does the 

deployment of public Wi-Fi address the digital inequality issue in New York City? Or does it 

reflect the digital inequality on the contrary? And what factors are driving the (spatial) 

distribution of these Wi-Fi locations? There are few existing studies have empirically 

examined the determinants of public Wi-Fi deployment density and distribution in the U.S. 

context with the geographical data on the specific locations of Wi-Fi access point, while 

incorporating a spatial dimension. This study presents a very first spatial analysis of the 

public Wi-Fi deployment in the urban America using one of the most prominent public 

Internet projects of NYC. The current study is implemented in two steps: (1) It examines the 

hot (and cold) spots in public Wi-Fi distribution with the Getis-Ord Gi* statistics across the 

census tracts of New York City. (2) By adopting the Spatially Aware Technology Utilization 

Model (SATUM, Pick & Sarkar, 2016), it analyzes what demographic, socio-economic, 

digital infrastructure, and political factors would be associated with the count of public Wi-Fi 

hotspots deployment. Analytically, a Bayesian spatial modeling with negative binominal 
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regression is utilized while accounting for the spatial random effects. In particular, this study 

aims at utilizing empirical evidence to investigate the effectiveness of de Blasio 

administration’s Internet Master Plan on serving the broadband unserved/underserved areas 

and digitally marginalized communities in NYC, with a spatial perspective.  

Related literature 

Wi-Fi access within a spatial scale 

One of the earliest empirical studies investigating the Wi-Fi access point was 

conducted in Cincinnati, Ohio by Grubesic & Murray (2004), which decomposes the uneven 

spatial distribution of Wi-Fi density across the neighborhoods. The other case was situated in 

Baton Rouge, Louisiana (Driskell & Wang, 2009). However, Driskell and Wang (2009) did 

not focus on the Wi-Fi access point on the public domain like municipal Wi-Fi network that 

this paper focuses on. Instead, they conceptualize the presence of a Wi-Fi network in a 

broader sense: the geographical unit with any residentials of a Wi-Fi device, a broadband 

Internet subscription, and a networking infrastructure. Out of the U.S. context, one empirical 

study in Shanghai, China by Wang et al. (2016), which mapping out the government-

sponsored Wi-Fi hotspots, has identified the spatial inequality as they could not cover the 

traditional neighborhoods in the central city and sub-districts in remote rural areas in 

Shanghai, China. Kim (2018) uses the public Wi-Fi locations as a proxy measure of the urban 

vitality in Seoul, South Korea.  

It has been long studies that the municipal Wi-Fi access should have the potentials to 

support the local communities on economic growth, social interaction, as well as narrowing 

down the digital divide while enlarging the public sphere with more civic participation 

(Hampton & Gupta, 2009; Hampton et al., 2010; Lemstra et al., 2010; Torrens, 2008; Yang et 

al., 2021). However, as Fuentes-Bautista and Inagaki (2012) point out in the case of Austin, 

Texas Wi-Fi initiatives are mostly serving the best-connected and technologically savvy users 
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of the Internet in the city. Meanwhile, the public access of high-speed wireless services is 

normally absent amongst the ethnic minority and low-income neighborhoods, which not only 

reflect the underlying socioeconomic inequalities but also created a new form of inequality in 

connectivity (Fuentes-Bautista & Inagaki, 2006, 2012). In particular, the Wi-Fi access in 

urban communities taps on the classic first level of digital inequality or digital divide 

litearture, as the disparities in digital access on Internet and computers measured as a 

dichotomous distinction between haves or have-nots (DiMaggio et al., 2004). Given the 

limited literature in this specific topic (which has also demonstrated the contribution of the 

current study), in the next section, we are drawing a broader picture from the literature in the 

access or availability of digital infrastructure and information and communication 

technologies (ICTs) within a spatial scale. 

The spatiality of ICT access 

Adopting from the media ecologist schools, Adams and Jansson (2012) have called 

for the construction of the research paradigm in the interdisciplinary communication 

geography, addressing the spatial turn of communication studies (Falkheimer & Jansson, 

2006). Some scholars argue that one of the advantages brought by the development of ICTs s 

is that it breaks the constraints of space as mobile-seamless while increasing the spatial 

flexibility of daily activities (Martínez-Cerdá, 2020; Schwane & Kwan, 2008). However, 

there are also scholars concerning the physical space or the place-based attributes that might 

affect people’s ICTs practices as well (Fast et al., 2019; Liu, 2019). The argument of end of 

geography in technology (Graham, 1998) could be rebutted since Internet and the latecomer 

social media is still dependent on the physical space, as the phsyciallity of the virtuality 

(Dourish & Bell, 2007; Tranos, 2013). ICTs should be “situated, localized and specialized” in 

space (Rodriguez-Amat & Brantner, 2016, p.15), as Adams and Janssons (2012) further 

explicated the so-called “media/communication” in spaces (or ICTs in spaces) as 
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emphasizing the fixed communication infrastructure, which should be better interpreted as 

the information channels, or the flow patterns. 

Especially when comes to the wireless Internet technology like Wi-Fi, the spatiality of 

information channels or flows is constructed by the information infrastructure. As Dourish 

(2006) argues, ICTs are involved in the operation and emergence of the social and cultural 

production of space when the human agents encounter space as a collective form. In other 

words, the uses of ICTs and ICTs themselves, are fully posited within and affected by our 

daily activities (Dourish, 2006, p.304). Furthermore, the geography of ICT (i.e., the spatial 

location of Wi-Fi), provide a tangible representation of information infrastructure in the 

urban space (Kim, 2018). Therefore, epistemologically, spatial thinking should be allowed in 

the setting of ICTs practices. To integrate space in ICTs assumes that space would be of help 

to better understand and predict human behavior. 

As the first law of geography claimed by Tobler, “everything is related to everything 

else, but near things are more related than distant things (1970, p.236)”. Here spatial 

autocorrelation comes in, as a concept that reflects the relationship between nearby spatial 

units (Getis, 2010). A positive spatial autocorrelation indicates that if the spatial units are 

nearer, the more similar their values are; and a negative spatial autocorrelation refers to the 

situation that when the spatial units are nearer, the less similar their values are. Meanwhile, if 

there is no spatial autocorrelation, the values of the nearby spatial units are randomly 

associated (Lee, 2017). A similar construct would be spatial dependence, which means the 

degree of spatial autocorrelation, and some scholars might use them interchangeably, or 

spatial association (Getis, 2010). 

Scholars in various disciplines such as regional studies and economics, have 

identified ICTs utilization (e.g., access and use) are spatial dependent based on various 

geographical units (i.e., state, county, prefecture, region) in the U.S. (Azari & Pick, 2005; 
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Pick et al., 2015), European (Maurseth & Frank, 2009; Billon et al., 2017), China (Chen & 

Ye, 2021; Song et al., 2020), and Japan (Nishida et al, 2014). In particular, one of the early 

attempts that touches on the spatiality of Internet access in the context of U.S. is the spatial 

taxonomy of broadband region proposed by Grubesic (2006). Through the Local Indicators of 

Spatial Autocorrelation (LISA), Grubesic identifies four types of spatial clusters of 

broadband availability: broadband core, broadband periphery, islands of inequity, and 

islands of availability on ZIP code level. Lucendo-Monedero et al. (2019) have also been 

able to detect the spatial pattern of ICT development of households and individuals in Europe 

at a regional level, which is operationalized as digital development index, which draws data 

from different sources, such as access to the Internet at home, use of the Internet by 

individuals, e-government, and e-commerce. In this study, we pose our first research question 

here: 

RQ1: What is the spatial pattern of the public Wi-Fi hotspots deployment in New 

York City? 

The determinants of ICT access  

In the long history of digital divide/digital inequality, demographic and socio-

economic factors have been empirically tested out frequently across different countries and 

culture, to be related to ICT access (Pick & Azari, 2008). However, what have been missing 

in the digital divide/digital inequality literature is the presence of spatial effects, as the 

geographical unit with high or low values of ICT access or utilization could be influenced by 

their neighboring units with similar value of ICT practices. Given the spatial emphasis of this 

study, we will be using Spatially Aware Technology Utilization Model (SATUM) as the 

theoretical framework to incorporate the spatial dimension into the analysis of ICT practices, 

which originates in the Technology Acceptance Model (TAM). While being frequently 

neglected in previous studies, Pick et al. (2015) propose SATUM to incorporate the spatial 
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dimension into ICT utilization as an enhancement of UTAUT (Unified theory of acceptance 

and use of technology). Previous studies have taken ICT practices as the outcome variables, 

while ignoring that demographic factors might influence the utilization and availability of 

ICT within the geographical unit and adjacent units as well, such as average age of the 

population, employees in professional, scientific and technical sectors, income, GDP per 

capita, education, gender, race and ethnicity (Azari & Pick, 2005; Billon et al., 2017; Song et 

al., 2020). While acknowledging the role of the determinants in ICT practices as mentioned 

previously, SATUM further proceeds with spatial autocorrelation analysis (for each variable), 

confirmatory analysis with OLS, diagnostic testing for the OLS regression residuals, and 

spatial regression models. As an inductive reasoning-based model of ICT practices, SATUM 

is capable of explaining digital inequality within a geographical scale since its explanatory 

variables such as socioeconomic factors are also implicitly spatial. This has been empirically 

tested at the U.S. domestic level as well at the international level, in Latin America and 

Europe (Pick et al., 2021; Pick & Nishida, 2015; Sarkar et al., 2019). In the past literature, 

two types of basic spatial econometric models are used in the next section accounting for 

spatial dependence deriving from OLS regression with Anselin’s approach (Anselin, 2013). 

One of them is termed the spatial lag model, which adds a spatially lagged (or “neighboring”) 

dependent variable as part of the explanatory factors, correcting for the biased and 

inconsistent estimation (application in ICT access see Billon et al., 2017; Chen & Ye, 2021). 

The other one is called the spatial error model, which adds a spatial lagged error term, 

assuming the unobserved errors in the model are spatially correlated as correcting for the 

inefficient estimation (application in ICT access can be referred to Maurseth & Frank, 2009; 

Noh & Yoo, 2008). Nonetheless, we will discuss more about why we are choosing Bayesian 

spatial modeling in the study over the traditional spatial econometric model in the method 

section.  
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Since there is no existing study has examined the spatial distribution of public Wi-Fi 

hotspot in the urban American context, this study offers the very first investigation under the 

framework of SATUM. Furthermore, focusing on the community needs for digital 

infrastructure, we mainly utilize the demographic and socio-economic factors which could 

reflect the demanding side of public Wi-Fi hotspot in our analysis. Race and ethnicity have 

been found for long to be significant factors in relation to digital inequality. Previous studies 

found that the percentage of the Asian population is positively related to Internet access and 

usage, while percent African American population and Hispanic population are negatively 

associated with Internet access and usage (Campos-Castillo, 2015; Zahnd et al., 2022). In 

particular, racially and ethnically segregated neighborhoods correspond with the cost barrier 

of access toward Internet (Mossberger et al., 2012). However, unlike Internet subscription at 

home, the Wi-Fi deployment is situated in the public domain, rather than owned by private 

household. Therefore, the relationship between the race/ethnicity and the deployment of Wi-

Fi hotspot is not clear yet. We here ask: 

RQ2: What is the relationship between (a) the Asian American population; (b) the 

African American population; (c) Hispanic population and the Wi-Fi hotspot deployment on 

census tract level in NYC? 

Although the role of education attainment toward Internet access has been long 

studied, as the early adopters of Wi-Fi technology are usually tech-savvy users with higher 

education level (Elena-Bucea et al., 2021; Fuentes-Bautista & Inagaki, 2012). However, in 

the context of Wi-Fi hotspots deployment, the users do not initially choose to adopt or 

consume. Meanwhile, economic determinants such as income and investment have also been 

long and widely found to have a positive relationship with Internet access and usage 

(Dasgupta et al., 2005; Elena-Bucea et al., 2021). Martin and Robinson (2007) find that the 

odds of access increased most rapidly for individuals with the highest income level and most 
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slowly for individuals with the lowest income level. Similarly, given the public or semi-

public nature of Wi-Fi deployment, we would like to ask: 

RQ3: What is the relationship between education attainment and the Wi-Fi hotspot 

deployment on census tract level in NYC? 

RQ4: What is the relationship between (a) median household income; and (b) GINI 

index (income inequality) and the Wi-Fi hotspot deployment on census tract level in NYC? 

Meanwhile, previous literature has argued that the proliferation of public Wi-Fi is 

mostly confined to commercial areas in the urban context since it is strongly associated with 

the sites of consumption (Fuentes-Bautista and Inagaki 2012; Torrens, 2008). Therefore, we 

hypothesize that: 

H1: The census tract in NYC with more commercial business with have denser Wi-Fi 

deployment. 

Besides, we would also like to evaluate whether the public Wi-Fi hotspot deployment 

under the Internet Master plan by de Blasio administration is able to better provide equitable 

internet access for the underserved or unserved neighborhood. Thus, we have also 

incorporated the digital infrastructure factors in our model. Meanwhile, public Internet 

usually draws upon a more dirigisme approach, such as the universal service obligations 

(Leith, 2012). We would like to know does the spatial distribution of public Wi-Fi hotspot 

favor specific regions affiliated with particular political spectrum? Hence, our last two 

research questions are put as below: 

RQ5: What is the relationship between digital infrastructure and the Wi-Fi hotspot 

deployment on census tract level in NYC? 

RQ6: What is the relationship between political orientation and the Wi-Fi hotspot 

deployment on census tract level in NYC? 
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Last but not least, given the focus on spatial perspective in this study, we would also 

like to ask:  

RQ7: Are any relationships above sensitive to spatial structure on census tract level in 

NYC? 

Method 

Data collection 

In this paper, we are drawing data from multiple sources. For the main dependent 

variable, the public Wi-Fi location data is retrieved from New York City’s Internet Master 

Plan through NYC Open Data (n = 3319).1 Integrating the TIGER/Line (Topologically 

Integrated Geographic Encoding and Referencing) shapefile from Census, we have 

aggregated all the Wi-Fi hotspots locations with spatial join into the map of New York City, 

whose unit of analysis is Census tract (see Figure 2, N = 2324).  

[FIGURE 2 AROUND HERE] 

In our analysis, the geographical region of New York City is defined by five counties 

or boroughs: Bronx county (Bronx), Kings county (Brooklyn), New York county 

(Manhattan), Queens county (Queens), Richmond county (Staten Island). Besides, for RQ2, 

we have further drawn data from multiple sources based on previous literature as follow: 

 Demographic and socio-economic factors: Population, African American population, 

Asian American population, Hispanic population, median age, population with less than high 

school education, GINI index, median income. All the demographic factors are obtained 

through American Community Survey (ACS) 2016 – 2020 5-Year Estimate. 

 
1 The data of Wi-Fi deployment distribution under the Internet Master Plan can be accessed from: 
https://data.cityofnewyork.us/City-Government/NYC-Wi-Fi-Hotspot-Locations/yjub-udmw/data  
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Commercial density: the density of point of interest categorized in the commercial 

domain. The density is measured by the aggregated number of the commercial business in the 

particular census tract collected through NYC’s open data portal.2 

 Digital infrastructure: household without any devices (i.e., 

computer/smartphone/tablet) at home; household without any broadband subscription; 

household without any Internet connection at home, which are gathered through latest 

American Community Survey (ACS) 2016 – 2020 5-Year Estimate. Additionally, we also 

include the Internet availability in the model, which is operationalized as the residential with 

fixed high-speed connections over 200 kbps in at least one direction per 1000 households 

collected from Federal Communication Commissions Form 477 data.3 

 Political orientation: we are also interested whether the political orientation of the 

geographical region would affect the spatial distribution of public Wi-Fi hotspots location. 

Therefore, we have collected the population affiliated with Democrats and Republicans in 

that census tract through ESRI’s ArcGIS Business Analyst. The descriptive statistics of each 

variable for NYC and each borough are presented in Table 1. 

[TABLE 1 AROUND HERE] 

Analytical strategy 

In order to answer RQ1 to investigate the spatial pattern of Wi-Fi hotspots location, 

we have utilized Geti-Ord Gi* statistics to perform hots pot (and cold spot) analysis (Getis & 

Ord, 2010). Specifically, the z-score of Geti-Ord Gi* could indicate where the variable is 

highly clustered spatially as hot spot (with a positive value) or not. It can be expressed as: 

 
2 The data of commercial point of interest of NYC can be accessed from: https://data.cityofnewyork.us/City-
Government/Points-Of-Interest/rxuy-2muj   
3 Additionally, we have tested out another measure of Internet availability (with a higher threshold) in the final 
model as well, as the residential with fixed high-speed connections at least 10 Mbps downstream and at least 1 
Mbps upstream per 1000 Households. But both measures yield similar results, so we decided to only include the 
less conservative measure of broadband speed in the final results.  
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(1) 

Where: 𝑥! and 𝑥# = the count of Wi-Fi hotspots at the census tract 𝑖 . 

𝑤!# = diagonal matrix of weight factors (spatial weight matrix). 

To investigate the relationship between demographic and socio-economic factors, 

commercial density, digital infrastructure and political orientation, and the spatial pattern of 

public Wi-Fi hotspots locations, we choose to use a Bayesian spatial modeling framework 

given the nature of dependent variable as a count data. Additionally, through a likelihood 

ratio test for overdispersion, we find a negative binomial distribution fits better for our 

dependent variable compared to a Poisson distribution (Lawless, 1987), which can be 

expressed as the following equation:4  

 𝑦! = 	exp	(𝛽' +1 𝛽#𝑥!#
$

#%&
) (2) 

Where: 𝑦! = the mean of the Wi-Fi hotspot count at the census tract 𝑖. 

𝛽# = the parameters examining the relationship between factor 𝑥# and 𝑦! at the 

census tract 𝑖. 

 In particular, we use integrated nested Laplace approximation (INLA) approach in the 

R-INLA package to attain the Bayesian estimates in spatial modeling which has been widely 

utilized in the domains of public health and epidemiology (Rue et al., 2009; Yang et al., 

2021). Instead of a frequentist spatial econometrics approach or a conventional spatial 

regression method, a Bayesian spatial generalized linear modeling is more suitable for count 

data which does not follow a normal distribution. Meanwhile, compared to the common 

approach to perform Bayesian inference like Markov Chain Monte Carlo (MCMC), INLA is 

computationally much less expensive while obtaining robust and comparative performance in 

 
4 The Chi-square test statistics is 2256.8 (p < 0.001, with all the covariates included), and 5707.91 (p < 0.001 
without any covariates) respectively.  
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spatial and spatio-temporal (Blangiardo et al., 2013). Moreover, since the current study cares 

less about the spillover effect, such as the influences of the variable of interests from the 

neighboring geographical units, the spatial autoregressive (lag) model or spatial Durbin 

model would not be helpful in the analytical strategy (LeSage & Pace, 2009). In this paper, 

we are focusing more on controlling the potential bias led by the spatial structure. Therefore, 

we are incorporating two more error terms based on equation (2):  

 
𝑦! = exp2𝛽' +1 𝛽#𝑥!#

$

#%&
+	𝛿! 	+ 𝜀!5,	 

𝑤ℎ𝑒𝑟𝑒	𝛿! 	~	ℕ<0, 𝜏(?	𝑎𝑛𝑑		 

𝜀!|𝜀)! 	~	ℕ(
∑ 𝜀!#~!

𝑛!
,
1
𝑛!𝜏+

)	 

(2) 

Where: 𝛿! 	= a random error for the corresponding census tract 𝑖, which is independent 

and identically distributed (IID) that follows a normal distribution with a mean of 

0 and a variance parameter; and 𝜏( = a precision parameter for the IID 

component. 

𝜀! = a spatially structured error that follows a normal distribution conditional on 

the neighboring census tract 𝜀)!; and 𝜏+ = a precision parameter for the spatial 

component, while 𝑗~𝑖 denotes the census tract 𝑗 is a neighboring census tract of 

the census tract 𝑖; and 𝑛! is the total number of the neighboring geographical unit 

of the census tract 𝑖. 

INLA uses vague priors and it puts a log-gamma on the precisions (𝜏( and 𝜏+) by 

default. In the analytical section, beyond the baseline negative binomial model, we have three 

types of model specifications: (1) only incorporating the IID component, as the IID model; 

(2) only incorporating the spatial component, as the intrinsic conditional autoregressive 

(ICAR) model; and (3) incorporating both the IID component and the spatial component, as 

the Besag-York-Mollié (BYM) model (Besag et al., 1991). Specifically, we use Deviance 
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Information Criterion (DIC), Watanabe–Akaike Information Criterion (WAIC), Conditional 

predictive Ordinate (CPO; specifically, the negative of the mean natural logarithm of the 

CPO values), to compare the models and decide the best model, as normally a model with a 

lower DIC, WAIC or CPO will be preferred. Meanwhile, unlike the frequentist approach, no 

p-value will be used in the results. However, the mean estimates (before exponentiation) and 

the 95% credible regions (CR) will be presented for each variable. If zero is not involved 

within the 95% CR, the corresponding variable will be considered as being associated with 

our dependent variable, the Wi-Fi deployment count.  

Results 

Hot spot analysis 

 In particular, we are using Queen’s (instead of Rook’s) continuity to construct our 

spatial weight matrix, which assumes regions with contiguous boundaries with sideways or 

corners are neighbors (see demonstration in Figure 3). The Moran’s I of the counts of public 

Wi-Fi hotspots is 0.463 and statistically significant under the Monte-Carlo simulation with a 

randomization of 999 permutations (p < .001), which indicates a positive spatial 

autocorrelation across New York City. In other words, the spatial distribution of public Wi-Fi 

hotspots is not equal in our study area. Furthermore, as Figure 3 shows, the z-scores of Geti-

Ord Gi* statistics has identified the spatial cluster of high values of Wi-Fi hotspots count is 

mainly located in Manhattan and a smaller cluster in Brooklyn Height and the pier. 

Meanwhile, the “cold spot”, or the regions with low count of Wi-Fi hotspots are pretty 

scattered in the rest of four boroughs other than Manhattan (the blue area in Figure 4). 

[FIGURE 3 AND 4 AROUND HERE] 

Bayesian spatial modeling 

 As the baseline model, we first fit a negative binominal regression with all variables 

described above. To better deal with the multicollinearity issue, we have removed some 
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variables based on the high correlation with other variables and theoretical explanative 

power, including the variables of population, and household without any devices (i.e., 

computer/smartphone/tablet) at home. Also, before performing any analysis, we have also 

standardized the variables since they are measured on different scales.  

 The Moran’s I index has indicated the spatial heterogeneity of the count of public Wi-

Fi hotspots presents, which also indicates we should formally incorporate the spatial structure 

in our modeling process otherwise it might introduce bias for the inference. As the Bayesian 

negative binomial regression results show in Table 2, based on the lowest DIC, WAIC and 

CPO, we can conclude the BYM model with both IID and spatial component is the best 

model after correcting the random error and spatial structured error. Among the demographic 

factors, we can find the Hispanic population in the census tract is constantly and positively 

associated with Wi-Fi hotspots deployment across four models. In the final BYM model, one 

unit of increase in the Hispanic population in the census tract is related to 51.1% increase in 

the count of Wi-Fi hotspots deployment [odd ratio = 1.511, 95% CR = (1.247, 1.831) after 

exponentiation], and the odd ratio does not change dramatically compared to model (48.1%). 

Meanwhile, the population with less than high school education in the census tract is 

constantly and negatively associated with the Wi-Fi hotspots deployment across four models. 

In our model 4, one unit of increase in the population with less than high school education in 

the census tract results in 26.2% decrease in the count of Wi-Fi hotspots deployment [odd 

ratio = 0.738, 95% CR = (0.582, 0.934) after exponentiation]. Before incorporating the 

spatial random error (model 1), the odd ratio is even lower as 0.682. Meanwhile, after 

incorporating the spatial structured errors, either GINI index or the median income is related 

to the Wi-Fi hotspots deployment anymore (model 3 and 4). Nonetheless, the commercial 

density in the census tract is constantly and positively associated with the number of Wi-Fi 

hotspots deployment across four models. One unit of increase in the commercial density is 
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associated with 13.3% increase of the Wi-Fi hotspots deployment [odd ratio = 1.133, 95% 

CR = (1.059, 1.213) after exponentiation] although the odd ratio drops from 1.313 compared 

to model 1. Amongst the digital infrastructure factors, only the number of residential with 

high-speed Internet connections is constantly and negatively associated with the number of 

Wi-Fi hotspots deployment. One unit of increase in the number of residential with high-speed 

Internet connections is related to 23.7% decrease of the Wi-Fi hotspot deployment [odd ratio 

= 0.763, 95% CR = (0.698, 0.834) after exponentiation]. And for the political factors, the 

results show that the population affiliated with Democrats is consistently and positively 

associated with the number of Wi-Fi hotspots deployment but not for Republicans. One 

increase in the population affiliated with Democrats is related to 44.8% increase of Wi-Fi 

hotspots deployment [odd ratio = 1.448, 95% CR = (1.242, 1.687) after exponentiation]. 

Without incorporating the spatial structure in model 1, the spatial random effect is in charge 

of 30.8% change in the association between population affiliated with Democrats and the 

count of Wi-Fi hotspots deployment [odd ratio = 1.756, 95% CR = (1.483, 2.081) after 

exponentiation].  

[TABLE 2 AROUND HERE] 

To further visually examine the non-spatially structure (i.e. the IID) and the spatially 

structured effect, we have mapped out the IID and spatial random error in Figure 5 and 6. If 

we only consider the IID component as shown in Model 2 and Figure 5, our independent 

variables are able to explain why some census tracts in the boroughs have a higher count of 

Wi-Fi hotspots deployment since the IID effects have are smaller for those areas with high 

numbers than those with lower numbers. However, when we incorporate both IID and spatial 

random error (i.e., the ICAR), Figure 6 tells us about the spatial structure among the census 

tracts is essential to explain the spatial distribution of Wi-Fi hotspots deployment in NYC and 

we can find high spatially correlated variance in our data. The census tracts in the blue areas 
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of Figure 6 are more likely to be influenced by their neighbors, such as the whole Manhattan, 

and the neighborhoods next to Manhattan in Bronx (Mott Haven, Port Morris, Melrose; 

Belmont, Bathgate, West Farms, East Tremont; University Heights, Morris Heights, Mount 

Hope, Fordham). Also, the spatial dimension plays a more important role in certain areas of 

Queens (Hunter’s point, Long Island city, Astoria, Woodhaven, Richmond Hill, Richmond 

Hill, Jamaica Center, Jamaica), as well as the pier closer to water in Brooklyn (Red Hook, 

Brooklyn Height, Williamsburg, Greenpoint). In short, the distribution of Wi-Fi hotspot 

deployment is more spatially connected throughout the whole Manhattan Island compared to 

other boroughs.  

[FIGURE 5 AND 6 AROUND HERE] 

Discussion and conclusion 

 This study provides the very first examination on the spatial patterns of public Wi-Fi 

hotspots deployment in the urban America context and also offer empirical results to evaluate 

the effectiveness of Internet Master Plan in New York City while incorporating the spatial 

structure. Our analysis has identified the spatial inequality of the deployment of the public 

Wi-Fi hotspots in New York City under the then-mayor de Blasio’s administration through 

the hotspot analysis. Utilizing the SATUM framework, we are able to identify the association 

between some demographic, socio-economic, digital infrastructure, and political factors, and 

the number of public Wi-Fi hotspots deployment in the New York City. Admittedly, the 

Internet Master Plan helps some communities with deprivation, such as Hispanic 

neighborhoods, which is not sensitive to spatial structure. However, the African American 

population in the census tract is not related to the public Wi-Fi deployment at all, which has 

created another layer of access barrier in the racially and ethnically segregated neighborhoods 

(Mossberger et al., 2012). Meanwhile, the finding is also contradictory to the positive 

relationship between Asian American population and Internet access in the previous 
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literature. We can also detect its efforts to mitigate the digital inequalities. For instance, the 

number of Wi-Fi hotspots deployment is higher in those neighborhoods with more 

residentials who do not have high-speed Internet connections. But it does not improve 

broadband access disparities between digitally marginalized areas and the rest of the city, 

especially for the census tracts of more population without Internet or broadband 

subscription. Meanwhile, it also reinforces part of the existing digital divide, such as 

communities with more population with lower educational attainment.  

As expected, the commercial density as measured by the number of places of interests 

under the commercial category, is associated with the count of public Wi-Fi hotspots 

deployment, echoing with previous findings (Fuentes-Bautista & Inagaki, 2012; Torrens, 

2008). Nonetheless, the BYM model shows that it is also related to the spatial structure as the 

estimate drops 18% when spatial random effects are considered. In other words, the census 

tracts with a higher commercial density would have a higher number of public Wi-Fi hotspots 

and it would affect the count of public Wi-Fi deployment in the neighboring census tract as 

well. Meanwhile, the positive relationship between median income as well as the income 

inequality and Wi-Fi deployment, as reflected in the model 1 and model 2, no longer exists 

after incorporating the spatial structure. In other words, the Wi-Fi hotspot deployment does 

not quite help with those communities who might not have the capability to access Internet 

by themselves. Also, the Wi-Fi deployment under the Internet Master Plan also favors 

communities with more people who self-identify themselves as Democrats. But as the results 

of model 4 show, the relationship is also subject to the spatial relationship among the census 

tracts in NYC as the estimate changes from 75.6% to 44.8%. Without considering the spatial 

dimension, the relationships as above would not be accurately estimated. These findings 

confirm the role of space in shaping the inequality of ICT access in the form of public Wi-Fi 
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deployment while supporting the utility of spatially informed modeling strategies in future 

research studying ICT access as well. 

 However, like many other studies, there are a few limitations that needs to be 

addressed in the future studies. First of all, we only use the raw count of public Wi-Fi 

hotspots, as we did not differentiate the type of Wi-Fi hotspots, and we did not incorporate 

the speed, coverage, or quality of each location either. The count of Wi-Fi hotspots certainly 

should not be treated as the quality of Internet access, as the second level of digital 

inequality. Secondly, there are quite a few missing values in the variable of political 

orientation collected through ESRI’s ArcGIS Business Analyst, as our unit of analysis 

reducing from 2324 to 1972 census tracts, which might impact the performance and even the 

results of the modeling. A higher-level analysis of geography (i.e., zip codes) should be 

tested as sensitivity analysis to avoid modifiable areal unit problem. Thirdly, there could be 

an interaction effects between the explanatory variables that could also significantly influence 

the deployment of public Wi-Fi hotspots, which is not studied in the current paper. And we 

believe an interactional approach to understand the spatial variation in ICT access would be 

an interesting area worth further examination. 
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Figure 

Figure 1. The deployment location of public Wi-Fi hotspots under Internet Master Plan in 
New York City. 
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Figure 2. The spatial distribution of public Wi-Fi hotspots on census tract level in New York 
City (after spatial join) 
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Figure 3. Demonstration of different continuity: Queen’s contiguity (left), Rook’s 
contiguity(middle), and Bishop’s contiguity(right) 
 

                            
 
 
Figure 4. The hot spots and cold spots distribution of public Wi-Fi hotspots in New York City 
(Geti-Ord Gi* statistics) 
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Figure 5. The non-spatially structured effect of the IID model 
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Figure 6. The spatially structured effect of the BYM model 
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Table 
 
Table 1. The descriptive statistics of the five boroughs in New York City 
 

 Bronx 
(n = 361) 

Brooklyn 
(n = 804) 

Manhattan 
(n=310) 

Queens 
(n = 724) 

Staten Island 
(n = 125) 

New York City 
(n = 2324) 

 Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Dependent variable             

Wi-Fi hotspots deployment 0.88 2.15 0.87 2.70 5.39 5.44 0.73 1.80 0.80 2.11 1.43 3.29 
Demographic factors             

Population 3953.06 2030.88 3204.94 1421.34 5255.33 2903.42 3136.71 1760.88 3804.77 1717.40 3605.66 2022.25 
African American population 1377.57 1141.19 1003.42 1203.35 753.15 1093.82 566.26 961.32 388.98 599.06 858.92 1121.34 
Asian American population 153.36 268.68 381.52 526.39 640.90 825.25 813.36 909.46 380.84 362.76 515.17 720.65 
Hispanic population 2215.42 1546.45 604.82 667.57 1349.81 1850.53 872.45 893.42 701.86 532.90 1042.97 1245.68 
Median age 35.76 7.15 36.79 7.13 38.97 7.35 40.18 6.31 40.52 6.47 38.17 7.11 
Population with less than high school 
education 2061.02 1223.70 1362.50 804.18 1712.46 1338.09 1265.29 811.53 1454.27 696.58 1492.34 1001.67 

Socio-economic factors             
GINI index 0.47 0.07 0.46 0.06 0.52 0.07 0.42 0.06 0.43 0.08 0.46 0.07 
Income 23610.01 10850.70 36664.97 20311.52 83989.55 52973.23 34199.09 16389.39 38235.17 12041.81 40387.59 30825.52 

Commercial density 0.22 1.07 0.30 2.01 1.40 2.80 0.23 0.94 0.78 1.59 0.44 1.79 
Digital infrastructure             

Population without any devices (i.e., 
computer/smartphone/tablet) at home 148.61 113.56 128.69 132.27 187.82 205.32 88.91 96.26 116.63 88.79 126.63 134.10 

Population without broadband 
subscription 45.02 47.79 25.06 31.94 62.19 102.91 21.60 33.78 35.64 34.34 32.60 52.27 

Population without Internet 234.83 176.63 177.62 160.07 248.47 263.78 132.14 134.16 170.18 131.28 181.39 176.86 
Residential with high-speed Internet  4.25 0.90 4.21 0.79 4.50 1.02 4.65 1.01 4.91 0.55 4.42 0.93 

Political orientation             
Population affiliated with Democrats 1521.95 767.74 1264.30 635.90 2403.04 1321.60 1131.31 675.51 1271.76 548.57 1414.35 886.71 
Population affiliated with Republicans 216.45 180.76 265.45 178.47 467.44 320.12 360.39 263.44 575.23 360.04 330.85 260.05 
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Table 2. The Bayesian negative binomial regression results in New York City census tract (N = 2324) 
 
 Baseline NB model 1 NB with IID model 2 NB with ICAR model 3 NB with BYM model 4 
 Mean 95% CR Mean 95% CR Mean 95% CR Mean 95% CR 
Intercept -0.097 (-0.181, -0.013) -0.483 (-0.627, -0.328) -1.146 (-1.383, -0.940) -1.258 (-1.374, -1.125) 
Demographic factors         

African American population -0.070 (-0.206, 0.067) -0.076 (-0.219, 0.066) -0.102 (-0.273, 0.069) -0.088 (-0.261, 0.084) 
Asian American population 0.096 (-0.016, 0.209) 0.140 (0.024, 0.255) 0.123 (-0.014, 0.261) 0.119 (-0.019, 0.257) 
Hispanic population 0.393 (0.234, 0.553) 0.477 (0.313, 0.643) 0.414 (0.224, 0.605) 0.413 (0.221, 0.605) 
Median age -0.020 (-0.110, 0.070) -0.138 (-0.250, -0.027) 0.020 (-0.091, 0.132) 0.003 (-0.112, 0.118) 
Population with less than high school 
education -0.383 (-0.599, -0.168) -0.509 (-0.741, -0.278) -0.298 (-0.530, -0.066) -0.304 (-0.541, -0.068) 

Socio-economic factors         
GINI index 0.142 (0.040, 0.245) 0.150 (0.046, 0.254) 0.054 (-0.045, 0.154) 0.054 (-0.048, 0.157) 
Income 0.508 (0.365, 0.651) 0.553 (0.423, 0.683) 0.087 (-0.045, 0.220) 0.117 (-0.019, 0.253) 

Commercial density 0.272 (0.156, 0.388) 0.239 (0.144, 0.335) 0.120 (0.053, 0.187) 0.125 (0.057, 0.193) 
Digital infrastructure         

Population without broadband 
subscription -0.035 (-0.008, 0.233) -0.040 (-0.125, 0.046) -0.016 (-0.100, 0.068) -0.026 (-0.112, 0.061) 

Population without Internet 0.112 (-0.117, 0.047) 0.148 (0.022, 0.273) -0.034 (-0.153, 0.086) -0.020 (-0.143, 0.103) 
Residential with high-speed Internet 
connections -0.317 (-0.404, -0.229) -0.258 (-0.353 , -0.163) -0.299 (-0.382, -0.215) -0.271 (-0.360, -0.182) 

Political orientation         
Population affiliated with Democrats 0.563 (0.394, 0.733) 0.666 (0.503, 0.830) 0.357 (0.207, 0.507) 0.370 (0.217, 0.523) 
Population affiliated with Republicans -0.215 (-0.350, -0.080) -0.230 (-0.375 , -0.086) -0.062 (-0.205, 0.080) -0.060 (-0.206, 0.085) 

Model hyperparameters         
Overdispersion hyperparameter 0.353 (0.315, 0.394) 0.590 (0.462, 0.728) 7.388 (2.269, 20.93) 13.858 (4.124, 29.825) 
Precision for IID component   1.530 (1.086, 2.184)   3.996 (1.482, 10.973) 
Precision for spatial component     0.169 (0.141, 0.200) 0.213 (0.163, 0.271) 

DIC 6150.91 6023.32 5260.43 5262.84 
WAIC 6158.85 6012.39 5257.2 5452.08 
CPO 1.33 1.65 10.58 9.17 
Marginal log-Likelihood -3159.61 -3146.11 -4836.40 -2704.29 

Note: NB: negative binomial regression; CR: credible region; IID: independent and identically distributed; ICAR: intrinsic conditional autoregressive regression; 
BYM: Besag, York, and Mollié.  


