

Spectrum Allocation as Concurrent Programming

Prasanth Prahladan (prasanth.prahladan@colorado.edu)

Department of Computer Science Silicon Flatirons Center, School of Law University of Colorado Boulder

Advancing Research : ESP 2023 17 January 2023

Outline

- 1. We can use the "metaphor" of concurrent programming to describe an important problem addressed within spectrum-management.
 - 1. Explain the intuitions that underlie this approach
 - 2. Explain the Rely-Guarantee framework for verifying specifications
- 2. Discuss a case-study : 5G-vs-RadioAltimeters where this approach may be applied.
- 3. Open Discussion

Collaborative Document-Editing

Event-Graph (Total-order)

Event-Graph (Partial-order)

Shared Resource

Comparison of Spectrum Management Strategies

Resource Manager

What do we gain from such a comparison?

Opportunity for interdisciplinary research: interference management.

The spectrum-management community might benefit from exploring strategies for interference-management as developed within the concurrent programming community.

Collaborative Document-Editing (v2.0) : Google Docs

Collaborative Document-Editing (v2.0) : Google Docs

How does Google docs permit concurrent editing?

Centralized Server :

- 1. Helps concurrent users identify conflicts as it happens.
- 2. Concurrent-users decide how to coordinate edits using side-channel.

"Interactive" conflict management

Collaborative Document-Editing : What next?

Disadvantages of Google Docs:

- 1. Interactive conflict-management : Can this be automated?
- 2. Centralized server : Can we permit decentralized control?

Collaborative Document-Editing (3.0) : MRDTs

Mergeable - Replicated Data Types (MRDTs)

RESEARCH-ARTICLE OPEN ACCESS

RunTime-assisted convergence in replicated data types

Authors:

Gowtham Kaki, 🔔 Prasanth Prahladan, 🔔

Nicholas V. Lewchenko Authors Info & Claims

PLDI 2022: Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation • June 2022 • Pages 364–378 • https://doi-org.colorado.idm.oclc.org/10.1145/3519939.3523724

Published: 09 June 2022 Publication History

77 0 🕕 144

Collaborative Document-Editing (3.0) : MRDTs

- Restrict the "geometry" of the Event-Graph
 - New Computational-model
 - Directed Acyclic Graph (DAGs)
 - Two-way "merges"
 - Well-defined API-calls

It is possible to achieve low-latency concurrent editing of a document across geographically distributed users while permitting custom-defined conflicts and guaranteeing convergence.

Evolution of Collaborative Document-Editing

Resource-centric Operation-centric MRDTs (3.0) Time/Region-Scheduling (1.x) Google Docs (2.0) Mergeable Replicated Data Types Conflict-free merge Interactive conflict management automated conflict management Custom-defined "permissible" conflicts Document Document Document **Run-Time Engine Application-Server** Scheduler **Control + Data Layer) Control Layer**) Users Sequential/Concurrent)

Shared Resource

Resource Manager

Concurrent Users

Research Question

How can we develop a similar operation-centric methodology within spectrummanagement?

Why is this important?

FCC Launches Proceeding on Promoting Receiver Performance

Full Title: Promoting Efficient Use of Spectrum through Improved Receiver Interference Immunity
 Performance
 Document Type(s): Notice of Inquiry
 Bureau(s): Engineering & Technology

Description:

The Commission takes a fresh look at the role of receiver performance in our spectrum management responsibilities, with the goal of facilitating new opportunities for use of our nation's spectrum resources.

DA/FCC #: FCC-22-29 Docket/RM: 22-137 Federal Register Citation(s): 87 FR 29248 (05/13/2022) **Document Dates**

 Released On: Apr 21, 2022

 Adopted On: Apr 21, 2022

 Issued On: Apr 21, 2022

Tags:

Devices, Engineering & Technology

The Problem : "Incomplete" Specification

In particular, "reception" is not incorporated into the calculus.

Receivers operating in one band are not immune to radio energy entirely contained within adjacent or nearby bands.

Challenges arise due to:

- 1. Lack of information of the neighbour's system specification
- 2. Externalities :
 - a. costs borne by one entity, benefits reaped primarily by the other.
- 3. Changes in status-quo due to re-allocation
 - a. Re-allocation of spectrum to different use, leads to change in RF-environment, which was considered at the time of design/deployment of neighbouring bands.

Two approaches to address the problem of Rx IX-immunity

- 1. Specify requirements on **performance of the equipment**
 - a. Tx and Rx equipment performance standards/mandates
- 2. Specify the **RF environment in which the device is expected to operate.**
 - a. Interference limits/Harm-claims threshold

The <u>FCC's current rules</u> are framed almost entirely in terms of performance requirements <u>on equipment</u>. There are only a few cases where the FCC has adopted Environment rules.

In search of a "complete specification" ...

- 1. How do we know that incorporating "receiver-equipment specification" or "environment-specification" will be sufficient?
- 2. Will this help develop a specification that is "future-proof"?

Our proposal:

A formal ("mathematical") framework that has been tried and tested over decades to derive a "complete and verifiable" specification for radio-services.

• Specifies "permissible behaviour" of **self**

Case Study via "illustrations": 5G -vs- Radio Altimeters

We shall examine a scenario where we can apply

the Rely-Guarantee-framework

to reason about an issue with existing service-specification.

Case study : 5G -vs- RadioAltimeters

Case study : 5G -vs- RadioAltimeters

Rely-Contract of RadioAltimeter

Expectation:

Figure 4. Mid-1990s spectrum occupancy scans of the 3700-4200 MHz band in four major US metropolitan areas, showing the historically quiet environment of that band in the US.

Guarantee Contract of 5G Radio

Reality: Around -10dBm (very noisy)

Figure 48. Measured emission spectrum of 5G base station transmitter Radio 4.

Assume-Contract for RadioAlt

Assume-Contract for RadioAlt

Open Discussion

- 1. What does the community think is important to develop a "complete specification"?
- 2. How should we compare different specifications?

Thank You

Prasanth Prahladan University of Colorado Boulder

prasanth.prahladan@colorado.edu

