

Earthquake Detection Using Submarine Cables

Pierre Mertz Fellow Infinera Corporation

1/16/2023

Motivation

Earthquake Early Warning (EEW) system -> Tsunami

NATURAL HAZARDS

Global growth of earthquake early warning

Public-private partnerships provide a method for vastly expanding sensor networks

By Richard M. Allen^{1,2} and Marc Stogaitis² figure) is one example of such a public-private partnership and how a massive obsersource must process large volumes of data

SCIENCE science.org

Seismometers are land based

- Seismometers that appear in the ocean are actually on islands
- Earthquakes in ocean:
 - Every 200km between the earthquake and a sensor results in a one minute delay in the warning

ゔ Infinera[,]

© 2023 Infinera. All rights reserved. Company Confidential.

From https://ds.iris.edu/wilber3

Seismometers are land based

- Overlay of submarine cable map on seismometer map
- Desirable to use existing communication infrastructure to detect seismic events
 - Subsea cables have repeaters every 50-100km. Using a subsea repeater as a sensor can reduce the distance from the Earthquake to the nearest sensor.

Ocean-Bottom Seismometer -> Repeater

From Wikipedia

OBS	Repeater		
Rests on sea floor	Rests on sea floor		
Stores data for period of time	SOP data created in SLTE equipment		
Bring to surface to retrieve data	Stream data in real time		
Battery powered	Shore powered		
2D Array	1D Array		

Fiber Sensing Techniques

Technique	Frequency	Resolution/ Max Distance	Sensitivit y	Telecom compatibility
Distributed Acoustic Sensing (DAS)	kHz	1 m / 50 km	****	Limited to 1 st span. Requires high power (no traffic)
State of Polarization (SOP)		10,000 km / 10,000 km	**	Transponder compatible (today)
Phase	5 Hz	50 km / 10,000 km	***	Ultra stable laser
Michelson Interferometer	100 Hz	10 m / 20 km	**	Use 2 fiber pairs.
SOP-OTDR	5 Hz	50 km / 10,000 km	**	Transponder compatible SOP detection circuit needed

Distributed Acoustic Sensing (DAS)

HE AND LIU: OPTICAL FIBER DISTRIBUTED ACOUSTIC SENSORS: A REVIEW JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 12, JUNE 15, 2021

SCIENCE · 29 Nov 2019 · Vol 366, Issue 6469 · pp. 1103-1107 · DOI: 10.1126/science.aay5881

Fig. 3. OFDR configuration.

State of Polarization (SOP) of data channel

ANTONIO MECOZZI^{1,*}, MATTIA CANTONO², JORGE C. CASTELLANOS³, VALEY KAMALOV², RAFAEL MULLER², AND ZHONGWEN ZHAN³

¹Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila 67100, Italy

² Gooale Inc., USA

³Seismological Laboratory, California Institute of Technology, Pasadena, USA

*Corresponding author: antonio.mecozzi@univaq.it

Compiled March 4, 2021

- SOP streamed from Coherent transponders on both sides
 - Integrated SOP variation across cable
 - Difficult to Localize

Formerly

OSA

Phase Sensing

GEOPHYSICS

Optical interferometry-based array of seafloor environmental sensors using a transoceanic submarine cable

G. Marra¹*, D. M. Fairweather², V. Kamalov³, P. Gaynor¹, M. Cantono³, S. Mulholland¹, B. Baptie⁴, J. C. Castellanos³, G. Vagenas¹, J.-O. Gaudron¹, J. Kronjäger¹, I. R. Hill¹, M. Schioppo¹, I. Barbeito Edreira¹, K. A. Burrows¹, C. Clivati⁵, D. Calonico⁵, A. Curtis²

Ireland

Ireland

Ireland

Ireland

Ireland

Ireland

D < 115 m

D: 17-110 m

D: 85-2360 m

D: 2040-4850 m

D: 3050-3470 m

D: 2330-3740 m

Ireland

MAR

MAR

MAR

MAR

MAR

MAR

MAR

Michelson Interferometer

Mo4A.4

European Conference on Optical Communication (ECOC) 2022 © Optica Publishing Group 2022

Sensing Applications in Deployed Telecommunication Fiber Infrastructures

Pierpaolo Boffi

- Use 2 fibers, one as reference arm in Michelson Interferometer
- Phase sensitivity without ultra-stable lasers

Fig. 5: Localization after 1 km of the onset of a dynamic event through the measure of the time delay in the 32-km long deployed ring.

SOP-OTDR

Experimental Setup

© 2023 Infinera. All rights reserved. Company Confidential.

Cable Spec.

🔰 Infinera[.]

Polarization subtraction

- Desired to measure SOP variation in single span between repeaters
 - Subtract prior repeater's SOP
 - Scaling and subtraction

$$S^{n'} = \begin{pmatrix} S_1^n & S_2^n & S_3^n \\ \overline{S_0^n} & \overline{S_0^n} & \overline{S_0^n} \end{pmatrix} - \begin{pmatrix} S_1^{n-1} & S_2^{n-1} & S_3^{n-1} \\ \overline{S_0^{n-1}} & \overline{S_0^{n-1}} & \overline{S_0^{n-1}} \end{pmatrix}$$

- Assumes small polarization variations
- Spectrograms Using Polarization Subtraction
 - Some spectral features clean up
 - While some remain
- Adding SOP-OTDR to Santiago will enable cleaner signals

86 Arequipa La Paz 87 Bolivia Cochabamba 91 San de 94 $\overrightarrow{\mathbf{x}}$ Chile 106 107 Córdo 108 109 Mendoza Santiago Google My Maps

DATA SERVICES / WILBER 3 / 2022-02-22 MWW6.0 JUJUY PROVINCE, ARGENTINA

Wilber 3: Select Stations

2022-02-22 mww6.0 Jujuy Province, Argentina

Latitude	Longitude	Date	Depth	Magnitude	Description
22.6625° S	66.2673° W	2022-02-22 06:12:49 UTC	242.29 km	mww6.0	Jujuy Province, Argentina

DATA SERVICES / WILBER 3 / 2022-02-22 MWW6.0 JUJUY PROVINCE, ARGENTINA

Wilber 3: Select Stations

2022-02-22 mww6.0 Jujuy Province, Argentina

Latitude	Longitude	Date	Depth	Magnitude	Description
22.6625° S	66.2673° W	2022-02-22 06:12:49 UTC	242.29 km	mww6.0	Jujuy Province, Argentina

Earthquake Origin Time P Wave S Wave SOP PSD S1 - 2022-02 22 0.8 0.6 0.4 Frequency (Hz) 0.2 0 -0.2 -0.4 10⁻¹ -0.6 -0.8 Time, UTC

Zhongwen Zhan, Caltech

😚 Infinera

6:21

21

Optical Fiber Networks for Environmental Sensing September 2022

Valey Kamalov, Google ECOC 2022, Mo4A.3

Cable Owners

Scientific Community

Regulators

What's next? Get the conversation started

- Most of subsea wet plants are able to sense environmental effects. It is a cable owner obligation / goodwill to report earthquake?
- Cable safety improvements through monitoring
- An opportunity to start global warming induced ۲ temperature variation monitoring - is it scientific interest or modern world requirement?
- Data Sharing Practices for the creation of a global platform
- Call for Optical Environmental Fiber Networks
- Subsea and Terrestrial
- DAS, SOP, Phase, and Voltage based
- Collaboration between private and public institutions with government regulations and public warning

Thank You