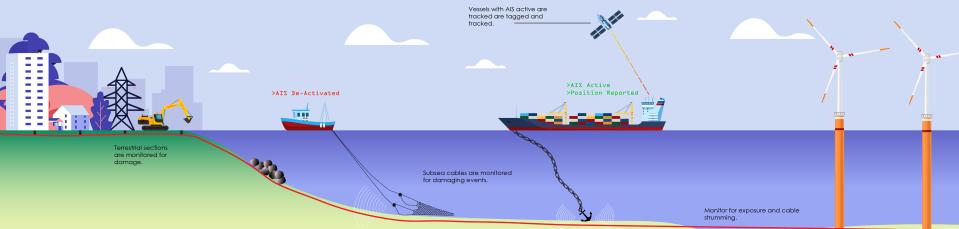
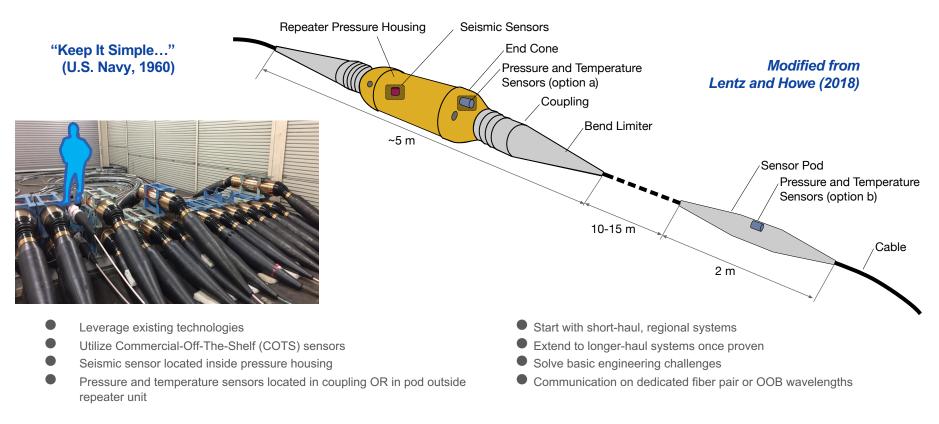

Distributed fiber span array. Phase: G.Marra et al, Science 2022, SubOptic 2023. Polarization: See our latest paper Luis Costa et al, Nature Communication Engineering, 2023; SubOptic 2023 +



Distributed Fiber Sensing – How does it work?

- Measure coherent OTDR phase (Raleigh Backscatter)
- Sensing channels effectively every metre
- Axial strain over gauge length 1-10m
- Range ~150 km
- External equipment can be added to existing cable systems
- Operates on live and dark fiber out to first repeater

DFS: Making the invisible world of subsea cables visible



DFS innovations as applied to subsea telecom cables are rapidly evolving

Capabilities

- Can be inserted on fully loaded existing marine telecom cables all subsea telecom cables can now be covered by DFS out to first repeater
- Fishing nets and anchors in proximity of the subsea cable
- Detect and locate vessels acoustically (when vessels turn off AIS)
- Detect and locate cable unearthing
- Detect and locate cable tampering
- Estimate residual strain changes on cables that lead to electrical, mechanical and temperature induced fault

SMART Repeaters: Design Approach

SMART Cables: Technical Challenges

• Dependability

 Most repeater systems are several generations along in development

• Minimal impact on telecom functions

 Required for adoption by commercial cable vendors

Sensor accuracy and stability

 No opportunity to calibrate easily or precisely

• Compatibility of cable deployment methods

• Variations in ships, mechanisms, etc.

ICPC Sensing Working Group

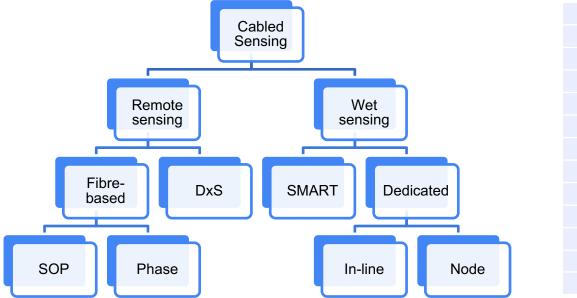
Terms of Reference (summarised)

To **provide information** to governments and other stakeholders, cable owners and ICPC Members on ... cable-based sensing technologies, specifically as they relate to the protection of submarine fibre-optic and power cables.

To **minimise jurisdictional creep and regulatory burdens** resulting from the use of cable-based sensing technologies.

31 members from 28 organisations

Simon Webster, NEC ICPC Executive Committee Member and Chair, Sensing WG


simon.webster@emea.nec.com

White Paper (under development)

- Strong focus on legal and policy implications (not today's topic)
- Comparison of technologies and their attributes

Primary function Constitutes MSR? Ownership of sensing assets Delineation of sensor data from telecom Raw data requires processing? Range Range resolution Sensitivity Calibration Reliability Cable data capacity needs Capital cost Wet Plant Maintenance implications

Submarine Sensing Community is a single body with mutually dependent parts. Goals - i) reduce cable cuts; ii) bring new revenue streams to cable owners

	-					
		Spatial	Maximum	Sensitivit		
Technology	Parameters	resolution	range	у	Key applications / remarks	
Fiber sensing in transoceanic				-		
cables	Science, 2018 (Marra); Science, 2021 (Zhan) demonstrated fiber as excellent sensor without localization					
Existing Distributed span	Power based line					
array	monitoring	per span	10,000 km	high	optical loops in repeaters - equipment monitoring	
Existing Distributed fiber					Not capable to see boats, whales due to low repetition	
sensing span array	polarization	per span	10,000 km	low	rate (long cable length)	
Existing Distributed fiber					Tsunami warning • Geophysics • Global warming (Not capable to see boats, whales due to low repetition rate	
sensing span array	T, x, P through phase	per span	10,000 km	high	(long cable length))	
					Subsea asset protection • Geophysics • Mammals	
DAS	T, x, P through phase	1-50 m	150 km	high	monitoring	
SMART	T, x, P	point sensor	not relevant	high	Tsunami warning • Geophysics • Global warming	

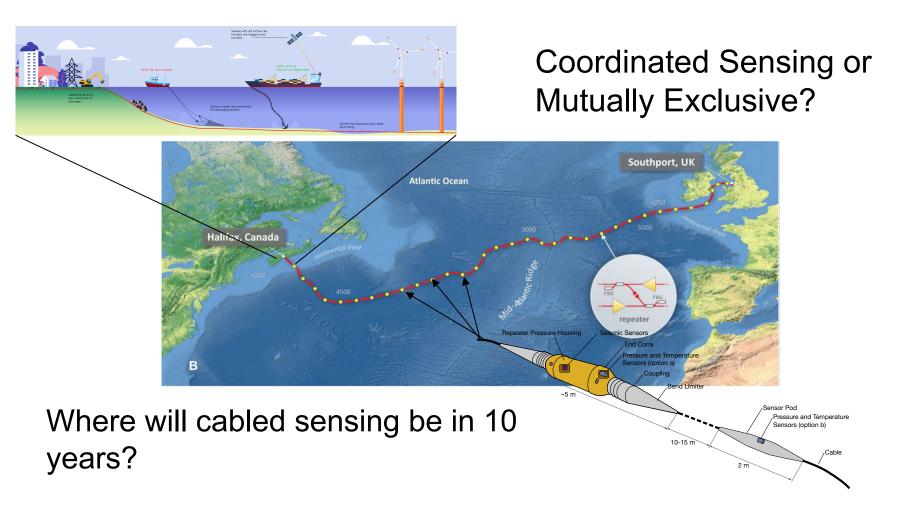
L-band DAS - Noninvasive to telecom traffic DAS (see me at my Poster today)

Submarine Sensing Community is a single body with mutually dependent parts. Goals - i) reduce cable cuts; ii) bring new revenue streams to cable owners

		Spatial	Maximum	Sensitivit		
Technology	Parameters	resolution	range	y	Purpose and Need?	
Fiber sensing in transoceanic			•	•		
cables	Science, 2018 (Marra); Science, 2021 (Zhan) demonstrated fiber as excellent sensor without localization					
Existing Distributed span	Power based line					
array	monitoring	per span	10,000 km	high	optical loops in repeaters - equipment monitoring	
Existing Distributed fiber					Not capable to see boats, whales due to low repetition	
sensing span array	polarization	per span	10,000 km	low	rate (long cable length)	
Existing Distributed fiber					Tsunami warning • Geophysics • Global warming (Not capable to see boats, whales due to low repetition rate	
sensing span array	T, x, P through phase	per span	10,000 km	high	(long cable length))	
					Subsea asset protection • Geophysics • Mammals	
DAS	T, x, P through phase	1-50 m	150 km	high	monitoring	
SMART	T, x, P	point sensor	not relevant	high	Tsunami warning • Geophysics • Global warming	

Why would someone deploy or implement each technology?

Submarine Sensing Community is a single body with mutually dependent parts. Goals - i) reduce cable cuts; ii) bring new revenue streams to cable owners


		Spatial		Sensitivit	
Technology	Parameters	resolution	Where?	у	Key applications / remarks
Fiber sensing in transoceanic					
cables	Science, 2018 (Marra); Science, 2021 (Zhan) demonstrated fiber as excellent sensor without localization				
Existing Distributed span	Power based line				
array	monitoring	per span	10,000 km	high	optical loops in repeaters - equipment monitoring
Existing Distributed fiber					Not capable to see boats, whales due to low repetition
<mark>sensing</mark> span array	polarization	per span	10,000 km	low	rate (long cable length)
Existing Distributed fiber					Tsunami warning • Geophysics • Global warming (Not capable to see boats, whales due to low repetition rate
sensing span array	T, x, P through phase	per span	10,000 km	high	(long cable length))
					Subsea asset protection • Geophysics • Mammals
DAS	T, x, P through phase	1-50 m	150 km	high	monitoring
SMART	T, x, P	point sensor	not relevant	high	Tsunami warning • Geophysics • Global warming

Where is each technology applicable?

Submarine Sensing Community is a single body with mutually dependent parts. Goals - i) reduce cable cuts; ii) bring new revenue streams to cable owners

		Spatial	Maximum	Sensitivit	
Technology	Parameters?		Range	y	Key applications / remarks
Fiber sensing in transoceanic			•		
cables	Science, 2018 (Marra); Science, 2021 (Zhan) demonstrated fiber as excellent sensor without localization				
Existing Distributed span	Power based line				
array	monitoring	per span	10,000 km	high	optical loops in repeaters - equipment monitoring
Existing Distributed fiber					Not capable to see boats, whales due to low repetition
<mark>sensing</mark> span array	polarization	per span	10,000 km	low	rate (long cable length)
Existing Distributed fiber					Tsunami warning • Geophysics • Global warming (Not capable to see boats, whales due to low repetition rate
sensing span array	T, x, P through phase	per span	10,000 km	high	(long cable length))
					Subsea asset protection • Geophysics • Mammals
DAS	T, x, P through phase	1-50 m	150 km	high	monitoring
SMART	T, x, P	point sensor	not relevant	high	Tsunami warning • Geophysics • Global warming

Expanding "Parameters" – what other factors are relevant, i.e. cost, operational logistics, risk vs. benefit, etc?

