5G: Why Do You Care?

Gary Kim
IP Carrier
gary@fatpipes.biz

Mobile Drives Global Subscriptions

Mobile Drives Revenue Globally

STL Partners forecasts less than 1% per annum growth in both fixed and mobile telecoms services to 2022

source: STL Partners

Mobile Drives Revenue in Asia, Pacific

Mobile Data Drives Subscription Growth

Capacity Demand Grows 50% Per Year

source: Nielsen Norman Group

4G Capacity Growth Cannot Keep Up

All Products Have a Life Cycle

Mobile Products have Life Cycles

Mobile Generations Have Life Cycles

Higher Average Revenue Per User?

source: Strategy Analytics

Evolution or Revolution?

Evolution: Most of the value is simply adding capacity 4G cannot supply

Figure 4: 5G services expected by 2021

Source: 451 Research, custom research commissioned by Vertiv, 2019 (n=105)

source: 451 Research

4G Congestion

World 4G speeds vary tremendously across the day showing the impact of congestion on daytime speeds

5G is Coming, on Schedule

EVOLUTION OF CELLULAR NETWORKS

4G Revenue Upside Limited

source: STL Partners

Performance Demands Keep Increasing

2G - 5G Speed

- · 2.5G speed is based on the maximum offered by EDGE
- · 3G speed is based on the maximum offered by HSDPA

Source: www.thetech.in Nov 2018

source: Tech In

26	3 5	46	56 2020?
Texting	Texting Internet Access	Texting Internet Access Video	Texting Internet Access UltraHD + 3D Video Smart Home

source: Signal Booster

5G Builds on 4G

Figure 11: How NSA and SA work

source: Test and Verification

source: Ericsson

So 5G is Evolutionary

- Lower cost per bit
- Capacity 4G cannot supply
- Builds on 4G
 - dynamic spectrum sharing
 - 5G air interface with 4G evolved packet core
 - macrocell sites reused
 - 4G small cell sites reused
- Builds on Wi-Fi offload
- Millimeter wave for capacity reinforcement in urban areas
- Uses 4G packet core before transition to 5G core (virtualized)

5G Also is Revolutionary

- Computers talking to computers
- Enterprise drives revenue growth
- Millimeter wave
- Fixed network substitution
- Network slicing
- Internet of Things
- Edge computing for latency, transport cost use cases
- Virtual and customized networks

Growth from "Non-Human" Users...

Connected devices (billions)

		2016	2022	CAGR
(w	ide-area loT	0.4	2.1	30%
s	hort-range IoT	5.2	15.5	20%
P	C/laptop/tablet	1.6	1.7	0%
Дм	obile phones	7.3	8.6	3%
∰ FI	xed phones		1.3	0%
		16 billion	29 billion	

source: Ericsson

From Scarcity to Abundance

<u>source: Anokiwave</u> orange FCC release, red/green already license to other uses. Blue shows potential mobile spectrum

Capacity Scarcity Has Been the Norm

	USA	Japan	Germany	U.K.	France	Italy	Canada	Spain	S. Korea	Mexico
Subscribers#	302.9M	117.1M	107.4M	79.9M	63.2M	90.0M	24.6M	56.0M	50.8M	91.0M
Average Consumers' Minutes of Use per Month**	793	141	133	204	231	153	373	150	303	191
Average Revenue per Minute – A Measure of the Effective Price per Voice Minute**	\$0.04	\$0.23	\$0.11	\$0.10	\$0.13	\$0.11	\$0.10	\$0.16	\$0.08	\$0.05
Efficient Use of Spectrum Subscribers Served per MHz of Spectrum Allocated	739,579	337,351	174,634	213,067	168,461	240,000	90,992	134,940	188,030	350,000
Spectrum Assigned										
for Commercial Wireless Use	409.5 MHz*	347 MHz	615 MHz	375 MHz	375 MHz	375 MHz	270 MHz	415 MHz	270 MHz	260 MHz
Potentially Usable Spectrum/In the Pipeline***	50 MHz	400 MHz	Recently auctioned 350 MHz	310 MHz	250 MHz	250 MHz	up to 200 MHz	270 MHz	120 MHz	150 MHz

^{*}Figure includes AWS-1, 700 MHz spectrum not yet in use and 55.5 MHz of spectrum at 2.5 GHz. #Regulatory and company websites.

^{**} Glen Campbell, et al., "Global Wireless Matrix 1Q11," Bank of America Merrill Lynch, May 1, 2011, at Tables 1-2. ***Regulatory and company websites and press reports.

Millimeter Wave Frequencies are the Future

Cellular frequencies, 1980-2040 (logarithmic scale)

www.FutureTimeline.net

Orders of Magnitude Difference

source: gsmaintelligence.com

Latency Advantages Drive Most New Use Cases

Low Latency Means Edge

From edge sensors to the centralized cloud

The edge computing ecosystem is comprised of four primary areas

source: CB Insights

5G and Mobile Edge Computing

Both latency and bandwidth cost are use cases for mobile edge computing

source: Wikibon

5G Shift to Enterprise

Figure 1: New incremental revenue opportunities in 5G to come from the enterprise segment

source: GSMA

Why 5G Fixed?

source: Mobile Experts

	MAIN TECHNOLOGY	HOMES AND BUSINESSES PASSED (MILLION)	FIXED BROADBAND CUSTOMERS (MILLION)*
Comcast	Cable	57.2	25.9
Charter	Cable	49.8	23.9
AT&T	FTTH/xDSL	>60	15.7
Verizon	FTTH/xDSL	14.6	7.0

^{*} Includes business customers (the vast majority of customers are residential though). Q4 2017 figures. Source: company data and GSMA Intelligence

Source: White paper: 5G Fixed Wireless Gigabit Services Today- An Industry Overview

source: Siklu

Share of Value in 5G Era?

Figure 10. Payment and retention of customer spend

(wireless industry total in \$ billion)

Sources: 2000 annual reports for AT&T, Verizon, Sprint, T-Mobile, USCC; 2006 annual reports for AT&T, Verizon, Sprint, T-Mobile, Alltel, USCC, Motorola, Apple, Google, Microsoft, Nokia, Research in Motion; 2013 annual reports for AT&T, Verizon, Sprint, T-Mobile, USCC, Apple, Google, Microsoft, Nokia, Research in Motion; Deloitte analysis.

source: Deloitte University
Press

Network Slicing

Network slicing creates <u>end-to-end virtualized</u> <u>networks</u> differentiated by speed, reliability, latency, energy consumption, security, geography, edge or cloud computing, charging, identity.

One Size Fits All

Wholesale Retail Network

MVNO: pay for what Best effort access only

Shared access

New Things You Can Do

Wholesale

Retail

Network

End to end:

End to end:

On-demand

Quality of service

QoS

Geography

Class of service

CoS

Speed

MVNO capacity

Substitution

Latency

Access VNO

On-demand

Reliability

Security

Business Model Impact

Network Wholesale Retail Customized product Customized networks Product differentiation with higher revenue Speed tiers IoT and value QoS tiers **Ultra-low** latency CoS tiers Video, gaming

Edge Computing Value: Latency, Bandwidth Cost

The Importance of Latency

Sample 5G network - latency is dependent on distance of transport

With 5G wireless networks can achieve latency of 2-3ms before transport.

Decreasing transport latency requires moving the core compute and cloud interface closer to the customer.

With the latency of 4G network, a car driving at $100 \, \mathrm{km/h}$ still moves $1.4 \, \mathrm{m}$ from the time it finds a obstacle to the time when the braking command is executed. Under the same condition, with the latency on a 5G network, the car will move just $2.8 \, \mathrm{cm}$, and this performance is comparable with the standard of an anti-lock braking system (ABS).

4G link latency 50 ms to 70 ms 5G link latency 1 ms to 2 ms

source: DataBank

Replace Half of Revenue Every 10 Years

source: Turk Telecom

"Access" CAGR Drops 50% in 5 Years

Internet value chain size and growth by segment

Note: Includes restatements of 2008 data to 2015 structure to enable comparability. Source: A.T. Kearney analysis

Many Related Advances...

Virtualized Core (NFV, SDN)
Virtualized Edge (Slicing)
Small Cells (Backhaul dominates cost)
Use "any spectrum" (below 2 GHz, Millimeter)
Aggregate licensed and unlicensed spectrum
Millimeter wave capacity
Substitute for fixed network
Designed for new use cases (IoT)

Key Attributes

- 1-10Gbps connections
- 1 millisecond end-to-end delay (latency)
- 1000x bandwidth per unit area
- 10-100x number of connected devices
- 99.999% availability
- 90% reduction in network energy usage
- Up to 10-year battery life
- M2M device support

Battery Life, Cost are Key for Many IoT Apps

LPWA Solution

	SIGFOX	LoRa	NB-LTE	LTE-M	EC-GSM
Range (outdoor)	<13km	<11km	<15km	<11km	<15km
MCL	106dB	157dB	164dB	156dB	164dB
Spectrum	Unlicensed	Unlicensed	Licensed	Licensed	Licensed
Bandwidth	100Hz	<500Hz	180kHz	1.4MHz	200kHz
Data Rate	<100bps	<10kbps	<150kbps	<1Mbps	10kbps
Battery Life	>10 yrs	>10 yrs	>10 yrs	>10 yrs	>10 yrs
Cost of Device	~2 USD	~2 USD	<5 USD	<\$ USD	<5 USD
Timeline	Today	Today	2016-17	2016-17	2016-17

	Devices and Bearer Scale	Control Plane Signaling	Data Plane Throughput	Mobility	Latency
Smart Meters	Massive (millions)	Low (2-10 t/ hr.)	Low	None	High Tolerance
Non Consumer Video	Moderate (10+ thousands)	High (2-10 t/tr.)	High	None	Low Tolerance
Connected Car	High (millions)	High (500-1000 t/hr)	High	Frequent	Moderate Tolerance
Smartphone Users	High (millions)	Moderate (200-500 t/hr.)	Moderate	Frequent	Moderate Tolerance

Table 1. Network Behavior of Three Examples of IoT Services and Smartphone Users

- unattended operation
- low device cost
- low access cost
- long battery life
- low bandwidth
- low latency

Spectrum Sharing

Licensed spectrum

Exclusive use

Over 40 bands globally for LTE

Shared spectrum

New shared spectrum paradigms

Example: 2.3 GHz Europe / 3.5 GHz USA

Unlicensed spectrum

Shared use

Example: 2.4 GHz / 5 GHz / 60 GHz global

- Citizens Broadband Radio Service
- TV White Spaces
- Licensed Assisted Access
- Licensed Shared Access

Most of the Upside is Apps

Figure 23: M2M/IoT Value Chain – Projected Revenues

source: ABI Research

THANK YOU